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[And hoping it is a harbinger of more new physics]



PLENTY TO PARSE!
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= HIGGS?
[AND IF SO, WHAT’S THE BEST DISTILLATION PROCESS?]



HIGGS HUNTERS ARE OFF THE LEASH!



HIGGS HUNTERS ARE OFF THE LEASH!

We’ve been acting with a similar degree of enthusiasm...

An apt metaphor:



HIGGS HUNTERS ARE OFF THE LEASH!

We’ve been acting with a similar degree of enthusiasm...

...what about our degree of sophistication?

An apt metaphor:



HIGGS HUNTERS ARE OFF THE LEASH!

We’ve been acting with a similar degree of enthusiasm...

Can/should we trust collaboration outsiders?

What do the Higgs data tell us about new physics scenarios, 
and how firmly should we believe these conclusions?

An apt metaphor:



ASKED ANOTHER WAY: WHAT GOES IN TO THESE PLOTS?

(Carmi et al, 1207.1718)

(Giardino et al, 1207.1347)

(Espinosa et al, 1207.1717)



OUTLINE

1.  Higgs constraints from the anxious past (February, 2012)

2.  Higgs constraints from the frenzied present (July, 2012)

3.  Higgs constraints as anticipatory aids and eventual consistency checks:

a.  Composite Higgs
b.  Supersymmetry
c.  Both? Other?



OUTLINE

Primary focus: (simplified) METHODOLOGY
Theorists will need tools to constrain their favorite BSM scenarios...

WHICH TOOLS WORK?

1.  Higgs constraints from the anxious past (February, 2012)

2.  Higgs constraints from the frenzied present (July, 2012)

3.  Higgs constraints as anticipatory aids and eventual consistency checks:

a.  Composite Higgs
b.  Supersymmetry
c.  Both? Other?
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PART ONE
(PreHiggstory)



PRE-HIGGS: WHAT WERE WE LEARNING FROM THE LHC?

Answer: Exclusion limits (of course)

with data like this very kindly 
provided for each search channel 

over their entire mass range.
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PRE-HIGGS: WHAT WERE WE LEARNING FROM THE LHC?

Answer: Exclusion limits (of course)

with data like this very kindly 
provided for each search channel 

over their entire mass range.
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Observed:

Already this is enough to 
start constraining generic 

spaces, not *just* SM-like
(far from obvious)



INTERLUDE: DEFINING “GENERIC”?

The ‘substandard model’ has to be augmented
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Assumption: the (custodial singlet) ‘Higgs’ might not be 
single-handedly responsible for unitarization, etc.  

more specifically: non-linearities may persist...
OTHER NEW PHYSICS enters at potentially low scales

The ‘substandard model’ has to be augmented

INTERLUDE: DEFINING “GENERIC”?



             FOCUSING ON THESE GUYS

Case studies to come: (minimal) compositeness and SUSY

Three massive vectors, triplet of approximate SU(2)

described at leading order:
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The ‘substandard model’ has to be augmented

!= SM= c

!= SM= a

INTERLUDE: DEFINING “GENERIC”?



Three massive vectors, triplet of approximate SU(2)

described at leading order:

U = exp [2i⇥a�a(x)/v]
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The ‘substandard model’ has to be augmented

WHY? 

1.  Naturalness    (Couplings’ deviation from SM)

II.  Highly relevant for constraining ‘typical’ BSM @ early LHC

III.  Consistency check if other low-mass EWSB states appear

/

INTERLUDE: DEFINING “GENERIC”?



(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA

Assume asymptotic limit, i.e. Poisson       Gaussian:

P (nB + µnS |nobs) = ⇥(µ)⇥ exp
�
�(nB + µnS � nobs)2

2nobs

⇥

⇥ µ̃95%
exp = 1.96�

⇤
nB

nS

(Three variables, only two constraints: we need to be slightly clever)



(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA

Assume asymptotic limit, i.e. Poisson       Gaussian:

P (nB + µnS |nobs) = ⇥(µ)⇥ exp
�
�(nB + µnS � nobs)2

2nobs

⇥

⇥ µ̃95%
exp = 1.96�

⇤
nB

nS

For observed exclusion, use a simple rewriting:

P (nB + µnS |nobs) = ⇤(µ)⇥ exp

⇤
�1

2

�
µ

nS⇧
nB

⇧
nB⇧
nobs

+ �

⇥2
⌅

; � ⇤ nB � nobs⇧
nobs

(Three variables, only two constraints: we need to be slightly clever)



(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA

Assume asymptotic limit, i.e. Poisson       Gaussian:

P (nB + µnS |nobs) = ⇥(µ)⇥ exp
�
�(nB + µnS � nobs)2

2nobs

⇥

⇥ µ̃95%
exp = 1.96�

⇤
nB

nS

For observed exclusion, use a simple rewriting:

P (nB + µnS |nobs) = ⇤(µ)⇥ exp

⇤
�1

2

�
µ

nS⇧
nB

⇧
nB⇧
nobs

+ �

⇥2
⌅

; � ⇤ nB � nobs⇧
nobs

Now make the assumption                        
nobs � nB

nobs
⇥ 1

(Three variables, only two constraints: we need to be slightly clever)



(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA

Assume asymptotic limit, i.e. Poisson       Gaussian:

P (nB + µnS |nobs) = ⇥(µ)⇥ exp
�
�(nB + µnS � nobs)2

2nobs

⇥

⇥ µ̃95%
exp = 1.96�

⇤
nB

nS

For observed exclusion, use a simple rewriting:

P (nB + µnS |nobs) = ⇤(µ)⇥ exp

⇤
�1

2

�
µ

nS⇧
nB

⇧
nB⇧
nobs

+ �

⇥2
⌅

; � ⇤ nB � nobs⇧
nobs

Now make the assumption                        
nobs � nB

nobs
⇥ 1

(Three variables, only two constraints: we need to be slightly clever)



(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA

Assume asymptotic limit, i.e. Poisson       Gaussian:

P (nB + µnS |nobs) = ⇥(µ)⇥ exp
�
�(nB + µnS � nobs)2

2nobs

⇥

⇥ µ̃95%
exp = 1.96�

⇤
nB

nS

For observed exclusion, use a simple rewriting:

P (nB + µnS |nobs) = ⇤(µ)⇥ exp

⇤
�1

2

�
µ

nS⇧
nB

⇧
nB⇧
nobs

+ �

⇥2
⌅

; � ⇤ nB � nobs⇧
nobs

Now make the assumption                        
nobs � nB

nobs
⇥ 1

(Three variables, only two constraints: we need to be slightly clever)



P (µ) = N ⇥ exp

⇤

⇧�1
2

�
1.96⇥ µ

µ̃(95%)
exp

+ �

⇥2
⌅

⌃

(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA
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Solve for remaining parameter using observed exclusion limit:

0.95 =
� µ̃(95%)
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0
dµ P (µ)

(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA
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RECAP:
o  Expected exclusion tells us about s/b
o  Observed tells us delta, completes determination of (AL) likelihood
o  Can be done over whole mass range, not just at ‘peaks’ with fits

Solve for remaining parameter using observed exclusion limit:

0.95 =
� µ̃(95%)

obs

0
dµ P (µ)

(RE)CONSTRUCTING LIKELIHOODS IN THE B.H. ERA



SANITY CHECK

CMS û 7 TeV, £ 4.8 fb-1

Official Combination
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Inverse Quadrature
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Provided we know exclusive breakdowns (i.e. have an idea of production 

mechanism) we can map multi-dimensional spaces to these likelihoods



USING ‘RECONSTRUCTED’ LIKELIHOODS



USING ‘RECONSTRUCTED’ LIKELIHOODS

OLD NEWS
LET’S MOVE ON*

* Though method still of use in cases where best fits are unavailable



PART TWO
The Higgs Era



WHAT ARE WE LEARNING NOW FROM THE LHC?

The obvious point: we’re no longer 
working with only exclusion data.

What tools can we test and use now?
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No likelihoods directly (yet), but we 
have de facto snapshots of them:
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UPDATED SANITY CHECK
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To notice:{o  Best fit well captured (as should be anticipated)

o  Errs on the conservative side (as advertised)
 by <1sigma or so



UPDATED SANITY CHECK

The moral: if it’s excluded by simplified methods, 
the pros can probably wipe it out definitively.
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INCIDENTAL: CAN WE (THEORISTS) DO BETTER?
[yes]
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INCIDENTAL: CAN WE (THEORISTS) DO BETTER?
[yes]
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IDEAL PRESENTATION:
GAMMA GAMMA @ CMS

[this is the sort of stuff we need to bug collaborations about]



ANOTHER INCIDENTAL: WHO’S RUNNING THE SHOW?

Who does what (generically)?

o  VV final states
=> vertical bands

o  Diphoton states
=> diagonal bands

o  Fermionic final states
=> horizontal bands

¯̄

mh = 125 GeV
‡ Combined
‡WW+ZZ
‡ gg HtaggedL
‡ gg HuntaggedL
¯ SM
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c

CMS Likelihoods

Eventually chopping up these channels to be as exclusive as possible
is what we’ll need to really probe the SM-ness of the Higgs

[and where do the tensions lie?]



PART THREE
What does it all mean?

(application to models - i.e. finally getting to some physics)



3A. COMPOSITE (GOLDSTONE) HIGGS
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 = ( 1  2 � �
0)T

“CH” group is SU(4)-invariant:

Vacuum is Sp(4)-invariant:
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“CH” group is SU(4)-invariant:

Vacuum is Sp(4)-invariant:

�EW =
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0 1
�1 0

◆
 � ✓ �!

One of the five Goldstones 
acts like a Higgs:

!= SM= c!= SM= a

a = c = cos ✓ ⌘
p
1� v2/f2

Vacuum alignment angle (determined by UV dynamics) represents how the 
gauged global symmetry is embedded relative to the unbroken Sp(4)
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[Simple principles exemplified with a simple model]

�AB = h A Bi
= ��BA

 = ( 1  2 � �
0)T

“CH” group is SU(4)-invariant:

Vacuum is Sp(4)-invariant:

{Many new states
 could be within
       reach!

o  Non-minimal symmetry structure
    => additional scalars (PNGBs)
o  Vector mesons (analogue of          )�QCD

m� ⇤ �⌅
N

⇤ 4�v⌅
N
⇥

�
1

1� (ghV V /gSM
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  SO(5)/SO(4) with SM fermions in spinor (“MCHM4”):

  SO(5)/SO(4) with SM fermions in fundamental (“MCHM5”):

[More minimal models: Four Goldstones+Custodial symmetry]
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[And now for something completely different]



3B. SUPERSYMMETRY

�
h
H

⇥
=
⇥

2
�
� sin� cos �
cos � sin �

⇥ �
ReH0

d
ReH0

u

⇥
Hu = 21/2, Hd = 2�1/2, ⇥ReH0

u⇤/⇥ReH0
d⇤ � tan�Conventions:

�

i

g2
V V hi

= g2
V V hSM

; e.g.
g2

V V h

g2
V V hSM

+
g2

V V H

g2
V V hSM

= 1

Implications: (Again) Additional new physics at low scales
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Heavy Higgs in the low-energy spectrum� Deviations from SM couplings
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cu ⇥ ghQuc/SM =
cos �

sin⇥

cd ⇥ ghQdc/SM =
� sin�

cos ⇥

a ⇥ gauge/SM = sin(⇥ � �)
} What is the data telling us 

about this space, which is 
dictated strongly by the 
(constrained) quartics?
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3B. SUPERSYMMETRY

Simple question of increasing relevance

Can we use the quartic structure and consequent information 
about couplings, comparing directly to data to tell us about 
feasibility and consistency of particular SUSY scenarios*?

*Assuming mSUSY > mh
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TYPE-II 2HDM, THE GENERAL CASE

With all quartics turned on, and treated generically:
�V = �1
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Yukawa Couplings: General Type-II 2HDM
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Two distinct regions 
accessible in the up-down 

Yukawa plane

The lower region 
(suppressed down-type)

requires some fancy footwork

These feed into mass matrices, thus into couplings

(cf. Azatov et al, 1206.1058)
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Yukawa Couplings: General Type-II 2HDM

Two distinct regions 
accessible in the up-down 

Yukawa plane

e.g. unbroken MSSM:

These feed into mass matrices, thus into couplings

(�1 + �3)⇥ v2u < (�2 + �3)⇥ v2d

CONCLUSION: bottom is typically enhanced in MSSM (assuming        large)��1



WHAT’S IN THE DATA?
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} Some tension between 
channels most sensitive to the 
vector coupling; let’s take this 
at face value and run with it...
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...What if down suppression 
persists?
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ESCAPE HATCHES IN THE (X)MSSM
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[eXtra stuff]
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With bottom suppression at largish tan beta possible when
�1 + �3 �

�4

2
tan� . 0

MSSM NMSSM, etc.

��4 =
y4t µ

32⇡2mt̃

"✓
At

mt̃

◆3

� 6At

mt̃

#

W = �SHuHd + f(S)

) ��3 = �|�|2/2

e.g. effects from stops:

��3 =
3y4t µ

2

64⇡2m2
t̃

"✓
At

mt̃

◆2

� 2

#
��1 =

3y4t
16⇡2

"✓
At

mt̃

◆2

� 1

12

✓
At

mt̃

◆4
#

(cf. Carena et al, hep-ph/9504316)

Possibilities remain (e.g. staus)...
(cf. Carena et al, 1112.3336 & 1205.5842)

inequality can be turned around, 
provided coupling is largish:

(cf. lots of stuff...)

� & 0.6
approaching Fat Higgs territory,
especially in the presence of non-
light stops; again possibilities 
remain...
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DEMOTING THE QUARTICS
[Possible escape hatch in case a b-suppressed balance is struck]

�L ⇠ ⇤3H �m2H2

Can we arrange something simpler than usual?  One possibility:

Umm...

But this comes from something we know well: Higgs from a “magnetic sector”

•  Minimal confining gauge group
•                         ;             ,
•  2N flavors: self-dual, strong F.P.
i = 1, . . . , 4
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(cf. Craig et al, 1106.2164; Azatov et al, 1106.3346; 
Gherghetta et al, 1107.4697; Heckman et al, 1108.3849...)
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DEMOTING THE QUARTICS

> 0
m ) mass,↵
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Lots of breathing room w.r.t. mass and angles; 
nothing all that exotic after all

[Schematically                                            ]�W = �uHuOd + �dHdOu

↵ and � fully independent!



1.  We don’t even need the quartics
               Nothing fancy (no tuning) needed in order to attain

               Nothing fancy (large    terms, mixings, ...) for             as

2.  The magnetic sector contains lightish scalars.  Minimally [                      ]:

3.  Theoretical aspects:
      >  Naturalness fully restored (frees up Higgs, stops as well)

      >  Unification certainly not automatic, but can be done

      >  Dark matter: nothing to add.

IMPLICATIONS

)

SU(2)2/SU(2)

) A cb ! 0 tan� ! 1

{
⇡0 ! tt̄, Zh0Decays to heavy SM states:

mh � mZ

e.g. ⇤M = TeV, large tan�, mh = 125GeV

m2
~⇡ ⇠ (�uvu + �dvd)⇤M

) m⇡ ⇠ 350GeV, �uvu/⇤M ' 0.1



(THE ONLY SAFE) CONCLUSION:
At this point,

THERE IS STILL PLENTY IN PLAY

and THINGS WILL REMAIN IN FLUX



SPECULATION:
THERE IS SOMETHING FUNNY GOING 

ON WITH FERMION COUPLINGS:

both 2D and 3D fits show preference for 
substantial suppression...

o  Composite Higgs: Flavor-universal suppression by order 50%

o  SUSY: A potentially relevant portion of Yukawa space can be 
     reopened by careful conspiracy among (x)MSSM parameters

o  In any case, much more information is needed...

o  Might be anticipating new physics, but will certainly serve as a useful 
    consistency check.  What message will the Higgs hunters return with????

�W = �SHuHd, �HO, �THuHu, . . .
(singlets) (doublets) (triplets)

) SM Fermions in a 5 of SO(5)? Light custodians?



SPECULATION:
THERE IS SOMETHING FUNNY GOING 

ON WITH FERMION COUPLINGS:

both 2D and 3D fits show preference for 
substantial suppression...

o  Composite Higgs: Flavor-universal suppression by order 50%

o  SUSY: A potentially relevant portion of Yukawa space can be 
     reopened by careful conspiracy among (x)MSSM parameters

o  In any case, much more information is needed...

o  Might be anticipating new physics, but will certainly serve as a useful 
    consistency check.  What message will the Higgs hunters return with????

�W = �SHuHd, �HO, �THuHu, . . .
(singlets) (doublets) (triplets)

) SM Fermions in a 5 of SO(5)? Light custodians?



SPECULATION:
THERE IS SOMETHING FUNNY GOING 

ON WITH FERMION COUPLINGS:

both 2D and 3D fits show preference for 
substantial suppression...

o  Composite Higgs: Flavor-universal suppression by order 50%

o  SUSY: A potentially relevant portion of Yukawa space can be 
     reopened by careful conspiracy among (x)MSSM parameters

o  In any case, much more information is needed...

o  Might be anticipating new physics, but will certainly serve as a useful 
    consistency check.  What message will the Higgs hunters return with????

�W = �SHuHd, �HO, �THuHu, . . .
(singlets) (doublets) (triplets)

) SM Fermions in a 5 of SO(5)? Light custodians?


